AD-A203 608

BTIC FILE Cupy

Equipment Simulation
for Language Understanding -

Tomasz Ksiezyk and Ralph Grishman
PROTEUS Project Memorandum #11-A
June 1988

To appear in The International Journal of Expert Systems

This report is based upon work supporied by the
Defense Advanced Research Projects Agency under Contract
N00014-85-K-0163 from the Office of Naval Research, and
by the National Science Foundation under grant DCR-85-01843.

&

89 1 10 048

To be published in: "The International Journal of Expert Systems"

Equipment Simulation for Language Understanding

Tomasz Ksiezyk
Ralph Grishman
Department of Computer Science
Courant Institute of Mathematical Sciences

. - .
New York University C ety e oy T

(212) 998-3491, ksiezyk@acf5.nyu.edu

Tr. wdees, 20 September 1987]
12777 Revised 20 June 1988 /
U Lo,
L T |
Abetract ' / ‘

/C—‘-W!'tumdem this| paper| the task of analyzing reptris regarding the'failure, diagposis and
repair of equipment. 'ﬁ! show that a general knowledge of equipment i:iot suﬂident}for a full

understanding of such reports. As an alternative, describe a system PROTEUS4~ which
relies on a detailed simulation model to support language understanding. describe the structure
of the model and emphasize features specifically required for language understanding. We show - | *
. how this mode] can be used in analyzing and determining the referents for complex noun phrases. —
“rir We point out the importance of identifying the implicit temporal and causal relation

s in the text
7 and show how the simulation capabilities of the model support this task. Finally, M(hcﬂe/ R I RS

bow PROTEUS may be extended to facilitate the entry of new equipment models and to assist in™
equipment diagnosis. (e N e
\ P -

1 Introduction

The work presented here is part of PROTEUS (PROtotype TExt Understanding System), currently
under development at the Courant Institute of Mathematical Sciences, New York University.! The
objective of our research is to understand short natural language texts about equipment. Our texts
at present are CASualty REPorts (CASREPs) which describe failures of equipment installed on Navy
ships. Our initial domain is the starting air system for propulsion gas turbines. A typical CASREP
consists of several sentences, for example:?

Unable to maintain lube oil pressure to SAC (Starting Air Compressor). Disengaged imme-
diately after alarm. Metal particles in oil sample and strainer.

It is widely accepted among researchers that in order to create natural language understanding
systems robust enough for practical application, one must provide them with a lot of common-sense
and domain-specific knowledge. However, 80 far, there is no consensus as to the best way of choosing,
organizing and using such knowledge.

The novelty of the approach presented here is that, besides general knowledge about equipment, we
also use a quite extensive simulation model for the specific piece of equipment which the texts deal with.
We see the following merits of having a simulation model:

1This work is being done in collaboration with UNISYS as part of the DARPA Strategic Computing Program.
2Unlems noted otherwise, all examples given in this paper are from actual CASREPs.

x>
ju_

\
/f"’,‘;.df"‘
e

]

N

e

o The model provides us with a reliable background against which we can check the correctness of
the understanding process on several levels: finding referents of noun phrases, assigning semantic
cases to verbs, establishing causal relationships between individual sentences of the text.

o The requirements of simulation help us to decide what kind of knowledge about the equipment
should be included in the model, how it could best be organized and which inferences it should
be possible to make. It appears that the information needed for simulation latgely coincides with
that necessary for language understanding.

e The ability to simulate the behavior of a piece of equipment provides an effective means of veri-
fying the system’s understanding of a message: it is relatively straightforward to build a dynamic
graphical interface which gives the user insight into the way his input has been understoood by
the system.

In addition to its role in language understanding, we believe that the simulation model provides many
— perhaps most — of the capabilities which would be needed for a model-based diagnostic or tutorial
gystemn.

We can compare our approach to model building with that often followed in application systems with
natural language front ends, such as data base, diagnostic, and tutorial systems. In most cases such front
ends were conceived as add-ons to existing systems, often only after such systems were in use for some
time. This leads to a situation where much of the knowledge necessary to solve some understanding
problems already existed in the main system, but couldn’t be used by the natural language module
because its structure had been designed without regard to the needs of language analysis. As a result
a separate knowledge base had to be built for the language module, duplicating to a large extent the
knowledge in the base system, and the two knowledge bases had to be interfaced, complicating the overall
design.

We have in contrast focussed from the outset on the needs of natural language understanding. We
have been led to develop a detailed simulation model, as would be required for a model-based diagnostic
or tutorial system. We have developed a rich graphical interface, which would be of benefit for these other
applications too. But we have also incorporated features which were specifically dictated by the needs of
language understanding, such as a mixed static/dynamic model and the ability to refer to dynamically-
created aggregates. We believe that this conceptually richer model, suitably extended, would provide a
good basis for & model-based expert system with an integrated natural language interface.

In a language system incorporating such a simulation model, the analysis of a piece of text involves
the following steps:

1. locating in the model the objects and other concepts mentioned in text (they are usually referred
to by noun phrases) and creating internal representations for those objects and other concepts
which are referred to in the text but are not part of the model;

2. recognizing elementary facts reported in the text and building their representations; these facts
are either about the above objects and concepts or about other facts;

3. finding relationships between elementary facts which make them into a coherent whole; such rela-
tionships may be given explicitly in the text or may have to be inferred; the inference mechanism
is based largely on queries to the model and on requests for the simulation of certain facts.

In the remainder of this paper we shall address the following issues: Why is a detailed equipment
model needed? How should such a model be structured and, in particular, what balance should we strike
between a static model and one created dynamically as the text requires? How should a noun phrase
analyser be organized to utilize such a model, and how is it affected by this static/dynamic balance?
How does the discourse analysis module work and what role does the simulation play in it? What are
the ways of supporting users in designing new equipment models?

2 The Need for a Model

In many natural language understanding systems the knowledge about the domain of discourse is or-
ganized in the form of prototypes for objects and actions, and for the relations between them which
are relevant for the domain. The prototypes are repositories for general knowledge about the instances
they may subsume. As each sentence is processed, it is split intc units which are identified as possible
instances of prototypes in the knowledge base. Through these prototypes access to general information
about the concepts invoked by the sentence is achieved. This information is often necessary for the
adequate interpretation (i.e. understanding) of the sentence. To account for the fact that the under-
standing of an utterance depends sometimes on context, it is necessary to maintain information about
the discourse context. One way of organizing this information is by creating and storing instances of
prototypes for entities from the text as they are analyzed. The combined information coming from the
context and from the processed sentence is used to solve problems like anaphora resolution, connectivity,
etc.

Assuming this approach, let’s consider the following sentence (let it be the first sentence in the
analyzed text):3

Starting air regulating valve failed.

Having completed the syntactic and semantic analysis of the sentence, we would recognize starting
air regulating valve as an example of the prototype regulating valve. We would then fetch its description
and create an instance of a regulating valve. Next, using the general knowledge about valves (of which
regulating valve is a more specific case), and the semantic information about starting air, we would
modify the just created instance with the fact that the substance the valve regulates is starting air.
From the syntactic analysis we would know that starting air regulating valve is the subject of the verb
fail. Using the prototype of the action fail, we would create its instance and possibly also further modify
the valve instance 8o that its operationa! state is recorded. These two instances would now constitute
the discourse context so far. Now, suppose the message continues with the sentence:

Unable to consistently start pr 1b turbine.

The processing would be similar to what bas been described above for the first sentence. We would
create an instance of a gas turbine, would fill its proper name slot with nr 1b and finally use the instance
as an argument in another instance recording the finding about start problems.

These two sentences come from an actual CASREP. In the starting air system (our initial domain)
there are three different valves regulating starting air. Two questions, crucial for understanding the
report, might be posed in connection with this short, two-sentence text: (1) which of the three valves
was meant in the first sentence? (2) did the reported difficulty with starting the turbine mean that the
turbine itself was impaired in some way and should thus be included in the report summary, along with
the valve, in the list of damages?

The general knowledge of equipment may tell us a lot about failures, such as: if a machinery element
fails, then it is inoperative, or if an element is inoperative, then the element of which it is part is
probably inoperative as well, etc. Unfortunately, such knowledge is not enough: there is no way to
answer these two questions (not only for an artificial understanding system, but even for us, humans)
without access to rather detailed knowledge about how various elements of the given piece of equipment
are interconnected and how they work as an ensemble. In our case we could hypothesize (using general
knowledge about text structures) that there is a causal relationship between the facts stated in the two
sentences. To test this hypothesis, we would have to consider each of the three valves in turn and check
how its inoperative state could affect the starting of the specific (i.e. nr 1b) turbine. To perform these
tests we would need a simulation model. If one of the three valves, when inoperative, would make the
turbine starting unceliable, then we could claim that this valve is the proper referent for the starting

3We should point out that in this doraain starting air is & type of air.

air regulating valve mentioned in the first sentence. This finding would allow us to answer question (2)
as well. If the failure of the valve is the cause of the trouble with the turbine, it is plausible to assume
that, once the valve is replaced, the turbine would work well also. Hence, it shouldn’t be reported as
damaged.

Another important argument in favor of an equipment model is related to the interpretation of noun
phrases (NP). One notable feature of technical texts is the heavy use of pominal compounds. It seems
that their average length is proportional to the complexity of the discourse domain. In the domain
of the starting air system, examples like stripped lube oil pump drive gear are, by no means, seldom
occurences.

The problem with nominal compounds is their ambiguity. The syntactic analysis is of almost no
help here. Even using semantic (selectional) constraints, as in [9], substantial ambiguity often remains.
When we know that the nominal compounds refer to objects existing in the system, and have access to
a model of the system, we can impose much tighter constraints, thus reducing the ambiguity. Model-
based causal reasoning (as illustrated above) may reduce this ambiguity further. The problem may be
metaphorically described as a jigsaw puzzle: given several pieces (concepts corresponding to individual
words from a nominal compound) put them together to build a sensible picture (concept corresponding
to the entire nominal compound). The task becomes somewhat easier in cases where we know that
nomina) compounds refer to concepts existing in the system. In terms of our metaphor this translates
into a hint: a set of pictures is given with the assumption that the solution is one of these pictures. Our
model plays a role of such a set of aiding pictures.

The above two considerations demonstrate that in cases where the domain is very specialized and
complicated (a typical situation for real-life equipment), language understanding systems should not
only be provided with general knowledge about the equipment but aleo have access to its model.

3 Related work

There are two areas of the Al research to which we can relate our work. The simulation model can be
considered as an exercise in qualitative physics. The discourse analysis module can be discussed as a
contribution to the natural language understanding of narratives.

A good collection of articles on commonsense reasoning about physical systems was published in 1984
as a special issue of Artificial Intelligence, reprinted as {4]. The major contributions to this volume, [10],
[7). and [13], as well as some other works published elsewhere, like [5], give a good picture of the field.
The approach we took for simulation shows some similarities with this research. However, because
our main objective is language understanding. we didn't investigate the matter of naive physice at the
depth demonstrated in the cited papers. On the other hand, the demands of the discourse analysis
lead us to some interesting issues not addressed before. [7] comes closest to our simulation model. We
also use a device-centered ontology in which the devices like valves, filters, etc. play the role of the
primitives. The no-function-in-structure principle, gualitativeness (the variables used to describe the
behavior of the device can only take on a small predetermined number of values), and the guasistatic
approzimation are central to the PROTEUS simulation. Similiarly, in the equipment simulation we
rely on three physical constituents: materials (in our case working substances), components (in our
case equipment units), and conduits. The major difference is that instead of a sophisticated qualitative
calculus (based on confluences in [7]), we use a much simpler approach in the form of simple rules, defined
for the equipment units. which map inputs to outputs (simulating feedback was not necessary for our
purposes). Considering the distinction between structural, behavioral, and functional descriptions [13].
we des! with the first two only. Another simplification is our treatment of processes as events; for
example, we simulate corrode as an event which occured at a certain time moment.

The most difficult chalienge, not present in the research on naive physics, followed from the impos-
sibility of including in the model everything which could possibly be mentioned in the CASREPs (we
discuss this in more detail in section 6.4.2). We had o provide a means for modifying the model dynam-

ically (i.e. during text processing), both by adding new components and by imposing new structures
on the existing parts. The compcsitionality principle proved very useful for solving the latter problem.
Another interesting issue corresponds to the recognition of objects on the basis of quite long and intricate
noun phrases encountered in the reports (see section 6.1). Some parts of the structural and behavioral
descriptions had to be specially provided for this purpose. More difficult was the problem of combining
both types of information, i.e. that used for recognition and simulation, into one. Still another novelty
was the use of generic structures (scc section 5.3), which were developed for the purpose of keeping the
size of the mode) as small as possible.

One of the earlier approaches to understanding narratives was based on story grammars {19] which
attempted to anticipate general developments common to all stories. They were very limited in their
applicability mainly because of their top-down character, which was ill-suited for unexpected input.
An effective solution to understanding texts in restricted domains is based on information formatting,
[20), which uses a classification of the semantic relationships within the domain to derive a tabular
representation of the text. Because of the attractiveness of this approach for specialized domains, it
was elaborated in (15] for processing CASREPs: a production system was used for interpreting the
information in the table created by the information formatting. It was possible thereby to generate
short one-line summaries for the reports. However, the system was not well suited to incorporating a
rich domain model.

Much recent work on understanding texts stresses the importance of providing a solid basis of pre-
stored knowledge necessary to interpret text fragments and to link them into a coherent whole. This
knowledge is usually organized in the form of pieces of stereotyped information; the two most widely
used mechanisms are frames and scripts. The approaches based on scripts are based on conceptual
dependency theory proposed by Schank. One of the characteristic features is their relative neglect of
syntactic information. The parsing of a sentence is concept driven, aimed at producing conceptual de-
pendency structures. Scripts account for stereotypical information only. To deal with novel situations
the concept of a plan was introduced [21] and essentially elaborated in [22). Plans are primarily used for
problem solving in situations where given a goal one has to satisfy it. In understanding, plans are used
in a different way: they help to follow parrated goals and actions of participants in the story in order to
make inferences essential for understanding. (14] is another example of work in a similar vein.

The research based on frames (e.g. [2]) usually assumned a syntactic analysis (often using ATN parsers)
of text as the first stage in the understanding process. Otherwise, the crucial problems were similar: how
to organize knowiledge (e.g. declarative vs. procedural), how to identify the appropriate frame (script)
relevant to the analyzed fragment, what to do in case of wrongly chosen candidates, etc. Because,
typically, the attacked stories dealt with human actions, the most difficuit problems they raised was the
variety of possible plots. This necessitated maintaining rather big collection of frames which added to
problems at every stage of processing. Frames were also successfully used for building more specialized
understanding systems, like the PAINTING program (6] which was designed for understanding stories
about mundane painting. One of the assumptions made there was that a program which is expected
to understand texts about a certain type of activity should be also able to perform this activity. We
embraced this conviction, believing that PROTEUS will be able to understand messages about equipment
damages, if it will also have the power of simulating this equipment’s behavior. Otherwise, the approaches
used for PAINTING and for PROTEUS are quite diflerent. We are not aware of any text understanding
system which relies on simulation to a comparable extent. There are similarities with other approaches
(e.g. [3])) in the way the structural knowledge is represented: we use a frame-like approach based on the
Symbolics flavor system.

4 The structure of PROTEUS

Fig. 1 presents a flowchart of how the model is used in the understanding process. [11] describes the
overall organization of PROTEUS in some detail.

CASAEY sptnes o |
PARSING
o
REGULA-
RIZATION
regniariend syeinctic aiyvls DISCOURSE
i ANALYSIS
CLAUSE :-::-. 55 du—a:- ELEM. FACT
SEMANTICS 7. bl CREATING
pardally strectared
o o) Damare oty o« ey e
QUERY ey
NP ——>| QUERY |¢——— INFERENCE
ANALYZER |&——— | PROCESSOR |) MODULE
v A
ity sventered
SIMULATION it et
MODEL
SUMMA.
RIZER
CASARP mmmary

Figure 1: PROTEUS structure.

PROTEUS processes sentences sequentially (first syntax, then semantics, finally discourse). Each
sentence is first parsed using 8 augmented context-free grammar; the parse trees are then regularized,
mapping all the different clause structures into a standard verb-argument form. These regularized
syntactic structures are then fed to semantic analysis. Each sentence is converted by Clause Semantics
into an atomic proposition or severs) propositions connected by logical, modal, epistemic, or temporal
operators. An atomic proposition consists of a predicate and arguments which are either discourse

entities determined by the NP Analyzer or other propositions.

Once the syntactic and semantic analysis of all the sentences from a CASREP is finished, the created
propoeitions are fed to the Discourse Analysis Module as a sequence in the same order as the corre-
sponding sentences in the report. Each proposition is first translated into some number (possibly 0)
of elementary facls. These elementary facts can be connected with links of various types representing
temporal, causal, and other relations. These relations are partially derived from the operators in the
representation generated by the Clause Semantics Module. Next, the Inference Module tries to infer
implicit relations, thus augmenting these links, and, if necessary, expanding the collection of elemen-
tary facts by inferred and hypothesized ones. This enriched structure of elementary facts constitutes
everything PROTEUS was able to understand from the analysed report. Depending on the particular
application, a summary is extracted from the output of the Inference Module. All parts of the Discourse
Analysis Module as well as the NP Analyzer make use of the information provided by the Simulation
Model in the form of answers to queries.

5 The PROTEUS Simulation Model

5.1 Characteristics of the domain

The target domains for PROTEUS are equipment uniis (EU): complex technical systems which accom-
plish physical tasks on demand. These tasks are carried out as serial and parallel combinations of simpler
tasks, which are performed by constituent EUs of the main equipment unit. Often these simpler tasks
can be decomposed further, leading to a hierarchy of tasks and EUs.

The EUs transmit their effects through various media, such as gases, liquids, mechanical movement,
and electric current. These media travel from one EU to another through conduits appropriate to the
different types of media.

5.2 Requirements for the domain model

The simulation mode] described in this section reflects our assessment of how best to organize the
knowledge necessary to solve the language understanding problems encountered in CASREPs. Any
knowledge base designed for the purpose of understanding highly technical texts about equipment failures
should be able to provide the following kinds of information:

o Detailed structural information about the domain equipment. This information is crucial for
analyzing NPs which in technical texts tend to be quite intricate. For example, it should provide
answers to questions like: is there any pair of referents for the words adapter and hub which
are related to each other by the predicates adjacent-to or part~ot. The ability to answer this
question is important for finding the correct referents for the NP adapter hub. The structural
information is also important for solving certain discourse analysis problems. In some cases, like
hypothesizing new facts which would make the reported facts into 8 coherent whole, it is necessary
to find equipment elements which fulfill certain structural conditions (e.g. are two specific gears
part of the same transmission chain). In others, like deciding whether a given rule capturing general
knowledge about technical equipment is applicable, we would like to know whether a particular
equipment element has features required by the rule.

o Functional information about the domain equipment. This is the information about the role
which individual parts play when the equipment is operating normally. Its significance parallels
that of the structural information, i.e. it is essential for analyzing NPs, hypothesizing new facts
and checking equipment element features. Consider for example the NP starting air valve. To
determine its referents it is necessary to be able to decide for every valve in the equipment whether
the air which can flow through it serves as a starting medium for any other equipment element. In

case of pump drive gear we would like to be able to determine which of the gears in the domain
equipment drives a pump.

o Operational information about the domain equipment. This is the information about the states
of particular parts in certain situations, like when some other part is damaged and still another
part is in a certain working state, for example engaged. This kind of information is essential for
finding causal relationships between reported facts, e.g. can the damage of a particular pump be
the reason for an alarm. The operational information is also used to determine prerequisites for
given states, like what state the diesel must be in when the SAC is engaged; the knowledge about
prerequisites allows to solve some time problems, e.g. determining partial ordering between start
and end nodes of intervals during which certain states are true.

Besides the information directly related to problems of language understanding we were also con-
cerned about capturing in the knowledge base the information necessary for graphical display. This
followed from our conviction that natural language understanding systems in technical domains should
be equipped with well designed interactive graphical interfaces.

Having considered several different forms for a knowledge base which would meet the needs described
above, we concluded that a simulation model for the domain equipment would be the best way to
combine the various kinds of information. The advantage of this approach over a rule based model is its
compactness (from a simulation model one can derive a very large number of rules) and its generality (it
is easier to interpret phenomena newly encountered in the reports in the context of a simulation model
than of a rule system).

It should be noted that not all information necessary for understanding the reports comes from the
simulation model. Certain types of knowledge, e.g. the general knowledge about equipment, is best
expressed in other forms (e.g. production-like rules), and we make use of it occasionally. Relatively
speaking, however, it is of secondary importance and thus can be neglected in the following description.

8.3 The structure of the simulation model

PROTEUS models have the structure of recursive transition networks. They consist of nodes connected
by directed link:. The nodes correspond to the constituent EUs of the system; the links to the conduits
connecting the EUs. The hierarchical structure of the EUs is reflected in the hierarchical structure of the
networks. To represent the internal structure of an EU, we have the corresponding node point to another
network in the model. Such (non-terminal) nodes are called system nodes. This recursive refinement
must stop somewhere; the (terminal) nodes — which don’t have underlying networks in a given model
— are called simple nodes. We shall use the term model-networks to refer to the entire collection of
networks modelling a piece of equipment.

Associated with each link is a wonking-substance (WS). These WSs correspond to the media entering
and leaving an EU (for example, the rotary motion provided to a pump and the fluid entering and
leaving the pump). We can think of the WSs associated with links entering and Jeaving 8 node as the
input and output data of the node.

The nodes, links, and WSs are represented as sets of (attribute, value) pairs. These pairs are used
not only to define the system structure, but also to express all other, non-structural information. For
nodes and links we call the attributes roles; for WSs, we call them properties. The attribute values may
be pointers to other nodes, links. or WSs, numbers, symbols, or propositions. Some of the values are
time-dependent reflecting the particular state of the model in the course of a simulation.

Each node has four (time-independent) roles carrying structural information: part-of (a pointer
up in the hierarchy of networks). structure (a pointer down in the hierarchy of networks), to-1inks,
and from-1inks (see below for more about links). The current state of a node is recorded in the (time-
dependent) roles control~state (which reflects the position of some control switches) and readiness-state
(which describes the possible damages reported in CASREPs). These two roles are important for refer-
ence and simulation but have no direct impact on the graphics. Some nodes also have (time-independent)

roles for simulation parameters, such as transmission-ratio for nodes describing couplings. There are
also roles used exclusively foi graphics, such as: (time-independent) size and grid-location specify-
ing for EUs’ icons their sizes and places on the screen and (time-dependent) moon-position for nodes
describing spin elements. This last role keeps the current angular position of the small globe which
revolves around the node’s icon on the screen to represent rotary movement.

There are two types of links in model-networks: simple links which connect two nodes in the same
network, and ancestor links which incide on a node from a higher level network or exit a node to a higher
level network. The two main functions links play in the model are: to complement nodes in establishing
networks and to relate WSs (whose parameters are often mentioned in the reports) to EUs (which also
are commonly referred to in the reports) — WSs are associated with links which are in turn connected
to nodes describing EUs.

Each link has the (time-independent) roles: wa-ptr (working substance associated with the link)
and to- and from-end (link's end and start nodes). The time-dependent aspects of links are important
for display purposes only and are derivatives of time-dependent attributes of the WS associated with
them. The graphical display for links is much more complicated than that for nodes because links are
the main vehicle of the dynamic graphical interface of PROTEUS: link icons are animated, reflecting
such features of the working substances as flow and pressure in the case of liquids and gases or speed in
the case of rotation.

Each WS has a (time-independent) attribute link-ptr which takes as value the set of all the links
which point to the WS. The time-dependent properties of WSs used for the simulation vary from case to
case depending on media: for liquids they may be: pressure, temperature, flow, color, and purity;
for rotary movements: rotary speed. Usually, some of these properties have their correspondents
used for reference purposes. For example, for liquids we may have normal-operational-pressure or
normal-operational-temperature. This is necessary because otherwise it would be impossible to find
a correct referent for a noun phrase like high pressure oil pump in a state of the model in which the pump
i8 not working. Modifiers of this kind usually refer to a situation of normal operation of the equipment:
independent of whether this pump is running or not or whether — because of a failure — the ail it
disgorges has only low pressure (this low value of the pressure is recorded as the property pressure,
whereas the property normal-operational-pressure remains unchanged, i.e. has a high value), it can
always be referred to in the reports as a high pressure oil pump. For a more detailed discussion of this
example see the section on noun phrase analysis.

Usually, a model network is subsumed by only one system node. However, in order to avoid unneces-
sary escalation of a model's size, we allow a system network to be subsumed by several system nodes. We
call such networks generic. This mechanism is useful for EUs some of whose components are identical.
For example, in our domain of the starting air system, there are three identical air compressors each of
which requires over 100 nodes. Generic networks allow us to avoid this costly repetition by modelling an
air compressor only once and for each of the compressors having a node whose structure attribute takes
the same value, namely the pointer to the generic network. Two modifications are necessary in order
to make generic networks work. Firstly, the to-ends of a generic network’s exiting ancestor links and
from~ends of a generic network’s entering ancestor links can no longer be individual nodes on a higher
level; for each ancestor link in a generic system there will be more than one way of ascending to a higher
level (either forwards using the to-ends or backwards using the from-ends). In fact there are as many
different ways to do this as there are system nodes subsuming the generic network. Secondly, all the
time-dependent attributes of the nodes, links, and WSs of a generic network will have distinct values for
each system node subsuming the generic network. One straightforward solution to these problems, taken
in PROTEUS, is to use as values of the attributes mentioned above, arrays of size equal to the number
of system nodes subsuming a given generic network. With this roproach an EU which is modelied by a
generic network is fully described by this network and an array index.

5.4 The simulation process

As we indicated at the beginning of this section, one of the main purposes for which we intended our
model] is the qualitative simulation of the modelled EUs (in most cases a precise quantitative simulation
is not required for language understanding). Simulation is performed by an event-driven algorithm which
is triggered by an external event and continues until a stable state is reached. The model handles three
types of external events: (1) operator-initiated actions, (2) undesired accidental events corresponding to
reported failures and damages, (3) so-called demons (¢f. below), i.e. events resulting from the automatic
behavior of the equipment. Although it is poesible to have several levels of detail in the model, the
simulation is always conducted on the lowest level, i.e. on the level of simple nodes. To each of these
nodes a model function is assigned. A model function of a node consists of two parts:

1. for any modelled change in the node’s readiness state, it defines the changes to WSs associated
with its input and output links;

2. for any modelled qualitative change in any of the WSs associated with the node’s input and output
links and any values of the readiness and operational state attributes, it defines the changes to the
WSs corresponding to all other input and output links.

The simulation can be viewed as an interweaving of intervals of stable and unstable states of the
model. An unstable phase is started by an external event such as a control action or a damage at
some node of the model. Once it happens, the model function of the node is applied and all changes in
the WSs associated with the node’s input and output links are determined. These changes propagate
(forwards through output links and backwards through input links) to the neighboring nodes. Each of
the nodes affected in this way is considered in turn and its model function determines how the changes
propagate further. This process continues until there are no more changes. At this point simulation
enters its stable phase and remains in this state until another external event occurs.

One feature of model functions is that there are no delays in propagating the changes triggered
by an external event. However, some of the analyzed messages mention (explicitly or implicitly) such
delays, e.g. the interval between the act of starting a turbine by an operator and the time when the
turbine gets actually started may extend up to several minutes. To accomodate such cases we introduced
demons as a third kind of event starting an unstable stage of the simulation. For demons to work a
simulation clock is required. A demon consists of two parts: a time point when it should be activated
and a8 demon procedure name. Demons are set during the execution of model functions of nodes. The
demon procedure is executed when the clock time reaches the demon activation time. It determines
what changes should be made to the WSs at the input and output links and possibly to the operational
state of the node. The propagation of these changes proceeds like the one described above for control
activities and damages.

None of the messages we analyzed required simulation of feedback. Therefore, the PROTEUS sim-
ulation was not designed to deal with feedback. Considering the possibilities of using PROTEUS-like
models for other applications than language understanding, notably expert and tutorial systems, this
must be certainly viewed as an important limitation. The research on incremental gualitative simulation
[7] gives us reason to believe that extending the coverage to feedback is possible in the framework of our
approach to simulation.

5.5 Generality of the model

We tried to design PROTEUS in such a way that it may be adapted easily to new equipment. Clearly, the
model has to be built anew each time we want to use PROTEUS for a new equipment unit. To minimize
the work required, we distinguish between knowledge about equipment in general and knowledge about
a specific piece of equipment. We tried to achieve this duality of knowledge using prototypes and their
instances: the model would be built of instances of prototypes. The prototypes constitute part of the

10

M

general knowledge base. In the instances we store only the information which is specific to the object
described by the instancc. For example, in the case of a gearbox, the information about its function
(speed change) should be stoied ii the protolype, and only the ratio of this change should reside in the
instance of a specific gearbox. Also the information about how a specific gearbox is used in the domain
equipment must be kept in the instance. Of course, the prototype-instance scheme ensures that all the
general knowledge connected with the prototype is also accessible from instances of this prototype. We
found the rich repertoire cf programming tools constituting the flavor system in Symbolics-Lisp a very
convenient vehicle for implementing this strategy.

5.6 Level of detail

In the preceding section we have provided a mechanism for a stepwise recursive refinement of the model.
The EUs we want to model are both big and complex. For example, our initial domain, the starting air
system, is described in the ship’s manual on 28 pages of text, figures and tabies. We need some kind of
simplification. A possibie approach would be to refine the hierarchy far enough so that everything which
potentially may be referred to in the reports would have a description in the model. This, however, seems
impractical. Consider a typical sentence from one of the reports: Investigation revealed a broken tooth
on the hub ring gear. Considering that there are several different gears in our starting air system and
each of them has many teeth which are very much alike, it's obvious that creating a separate description
for each of them wouldn’t be reasonable. The same remark is true for balls in bearings or for connecting
elements like screws, bolts or pins. On the other hand, information about the tooth conveyed in the
above sentence cannot go unnoticed. The solution we adopted for such elements is not to include their
descriptions in the model on a permanent basis but to keep open the possibility to create and add
them to the model if such a need arises during the analysis. A rule of thumb for deciding whether a
particular element deserves a permanent place in the model can be formulated as a question: How much
information specific to this element is necessary to solve understanding problems, like finding referents
(see the section on nominal compounds) or making inferences? As an example of the latter, let’s consider
a specific gear. We would like to know, among other things, the gear’s role and place in the modelled
equipment so that, in case of its damage, we could determine the impact on the equipment. Information
of this type can be deduced neither from the analyzed text nor from general knowledge about gears. It
must be known in advance. Our way to achieve this is to keep the gear’s description permanently in the
model.

There are, however, elements like teeth which have 8o little relevant structure that they are always
referred to as tooth, teeth together with the element higher up in the part/whole hierarchy (let's call
such an element a Aost). Thus, it is not necessary to maintain any specific information about them
in the model. It will suffice, if we are able to create their descriptions when they occur in the text.
All the possible information we will ever need to include in such descriptions will come from the text.
The information relating such elements with other parts of the equipment will come from their hosts.
For example, the impact of a tooth's damage on the equipment may be derived from the functional
information connected with its host. We will return to this issue of statically and dynamically modelled
objects later in this paper.

It is important to notice that there is nothing absolute in distinctions such as the one made above.
It is conceivable to have a piece of equipment of a larger scale than the SAC, where elements like gears
are not essential enough for us to be bothered with their shapes or locations; if broken they probably
would be referred to by giving the higher-level element of which they are part. In such cases we would
rather treat gears like we treat teeth here.

For simulation alone, it would be sufficient to keep in the model only those networks which are on the
deepest level. However, because the texts refer to equipment paris at various levels of detail, we have to
maintain all intermediary levels of the model. Furthermore, because of the requirement of relating facts
sbout such parts by means of causal hnks, we should also be able to cross levels in network traversals.
Such traversals are possible using the ancestor links.

11

5.7 An example: the starting air system model

As our initial domain we have chosen the "starting air system” used for starting gas turbines on Navy
ships. The model consisits of 15 networks with a total of about 175 nodes.

STARTING RIR COMPRESSOR nD. 1

Figure 2: Model network for SAC.

We show here two networks and one control console of the model. Both figures are Symbolics screen
images generated by PROTEUS from the model networks. Fig. 2 is the starting air compressor (SAC)
network. The rectangles enclosed in double lines are the system nodes, which point to more detailed
networks in the model. One of these is the LO (lube oil) network, shown in Fig. 3. Simple nodes are
represented by icons, such as the filter, cooler, and valve in Fig. 3. The rectangies enclosed in heavy
black lines represent control consoles from which the system may be operated and monitored. One of
these is shown expanded in Fig. 3. Clicking the mouse on the ON or OFF buttons turns on or off the
corresponding EUs. The control consoles also have indicator and alarm lamps as well as instrument
displays. The arrows represent links associated with the flow of WSs like gases and liquids. The insides
of these arrows show some of the parameters of these WSs. For examples, the bars indicate air and
the dots oil. The density of these bars or dots corresponds to the pressure of air or oil, respectively.
When the bars or dots remain stationary, it means there is no flow in the conduit corresponding to the
link. The rods represent links associated with rotation WSs. The rotation is indicated by small filled-in
globes (moons) on both ends of a rod and a line connecting these globes. The speed with which these
globes rotate indicates the speed of the corresponding WS. These dynamic displays provide a direct
visual presentation of the system's understanding of a message (oil may stop flowing or a gear rotating).
They are achieved as a side effect of the simulation used for understanding purposes. The links crossing
the outline boundaries are ancestor links (links which connect the network to other parts of the model);

i2

the other arrows are simple links.

33
m

! 4
' =
LAy

Propuision Control Consale 1a Central Contrel Statton

Figure 3: Model network for SAC LO System.

6 Noun Phrase Analysis

6.1 The role of noun phrase analysis

The goal of the noun phrase analyzer (NPA) is to convert a noun phrase into a set of referents that may
be used by subsequent stages of the system. For example, for a noun phrase describing an EU, the NPA
would return a pointer to the corresponding node in the equipment model.

Why is this a difficult task? As we noted earlier, the texts in this domain are replete with long
compound nominals, such as stripped Jube oil pump drive gear. Parts are not always referenced by
the same name, even within a single manual (for example, surge control system and compressor surge
valve assembly refer to the same EU); parts may be described by position, function, or other properties.
Consequently, we cannot simply use a large term dictionary; we must analyze the structure of each noun
phrase. Specifically, we must determine what modifies what within the noun phrase; for example, that
Jube (short for Jubricating) modifies oil rather than pump, drive, or gear. We must also identify implicit
relations among elements; for example, that gear is an adjacent part to pump. Syntax is of littie help

13

in this task, so the PROTEUS syntactic analyzer passes prenominal modifiers through as unanalyzed
strings. It is thus left to the NPA to determine the structure and implicit relations of the noun phrase.

The equipment model serves two functions for the NPA: First, the model is used to confirm possible
relations between noun phrase constituents (for example, that there is a gear which is adjacent to a
pump). Second, once a structure has been determined for the noun phrase, the model can be used to
provide a set of referents for the phrase. We call these referents discourse entities (DEs).

The interaction between the NPA and the model is mediated by the Model Query Processor (MQP).
The MQP evaluates domain predicates relative to the equipment model, and creates DEs when needed.
In this way the NPA need deal with only two levels of representation, the linguistic representation and the
representation in terms of domain predicates, and is made independent of the details of the equipment
mode] representation.

6.2 Word classes

For the purposes of the NPA, the words which may occur in noun phrases are grouped into semantic
classes. These classes reflect the ways in which the words may combine to form larger phrases. They
are specific to the equipment domain but are independent of the specific mode) representation. Each
noun phrase (and each consitutent phrase within a noun phrase which is identified by the NPA) must be
assigned an internal representation for use in subsequent processing; this representation is the discourse
entity mentioned above. Different types of entities require different internal representations, so the
entities are grouped into discoxrse entity classes. These classes are described below (cf. section 6.4).

Words which cannot stand alone as noun phrases, but only participate in noun phrases as names of
relations (e.g., regulating) or as arguments of relations (e.g., adjectives of shape) will not have corre-
sponding DEs. Thus these words will belong to a semantic class but not a DE class.

6.3 The Analysis Procedure

The first stage in the analysis consists of attempts to impose all meaningful structures on the words
which are constituents of the NP. For this purpose we use the semantic classes of the words and try to
combine them using the predicates. The set of predicates we use for this purpose is a result of a detailed
manual analysis of part of our corpus. We started by identifying three groups of predicates:

1. structural predicates: Adjacent-To, Assemble, Couple, Location, Made-0f, Part-0f,
Shape;

2. functional predicates: Drive, Lubricate, Operate-On, Regulate, Start;
3. special predicates: Alarm, Measure, Rame.

We considered each of these predicates in turn and tried to decide which semantic classes should best
describe the predicate’s arguments. In doing this we tried to come up with the broadest possible classes
within the limits of the technical sublanguage. Some examples of these semantic classes are:

equipment substance feature value measursment-unit shape direction
The predicates together with the appropriate semantic classes constitute patterns of the form
(Pred argy argy ...)

where Pred is a predicate of the domain and the arg; are semantic classes. At the current stage of
development we have 28 such patterns.

The NPA begins by fetching (from the dictionary) the semantic class of each word in the noun
phrase. Constituents are combined bottom-up based on their semantic classes and the set of patterns

14

described above. Most current systems validate the application of such patterns through selectional
checks (constraints on the argument classes of each predicate) ([9]). We perform such checks and then
go a step further and check for the existence of the specific relation between specific entities. This is done
through a call to the MQP. The MQP is first invoked for each word to obtain its internal representation
in the model, and then for each proposed predicate to verify the existence of the corresponding relation
in the model. If the relation exists, the MQP returns the representation for the head constituent of the
relation.

Applying these rules to post-nominal modifiers is relatively straightforward: the predicate can gener-
ally be detemined from the preposition, and the arguments of the preposition are explicit and delimited.
After processing the post-nominal modifiers, the NPA turns to the pre-nominal modifiers. Analysis of
these is considerably more difficult. The problem is to decide what predicates should be used and what
are the arguments of these predicates. Both the predicates as well as their arguments may be given
explicitly or implicitly. Examples are: temperature regulating valve (the predicate and both its argu-
ments are explicit), drive gear (the predicate and one of its arguments are explicit, the other argument,
the object of drive, is implicit), pump shaft (the predicate, part-ot, is implicit, both of its arguments
are explicit). The NPA considers the semantic features of the items, together with order constraints, to
match the items with arguments of some canonical predicate. A match is considered successful if it is
possible to identify some (not necessarily all) of the arguments of the predicate among the modifiers.
For verification purposes, it is assumed that the empty arguments match anything. Once a matching
canonical predicate has been found and as many of its arguments matched with the modifiers as possible,
the NPA may pose a verification query to the model.

In some cases, the proper argument to a predicate is an object or concept related to the explicit object.
For example, in air regulating valve the object of regulate is not air itself, but one of the properties
of air. A similar case is high pressure pump; here, the problem is to find a relation between an EU
(the pump) and & medium property (high pressure). To account for such cases, if none of the canonica)
predicates matches the modifying and the modified items, the NPA repeats the matching procedure
with objects or concepts which are variations of these items. Possible variations are: generalizations,
fragmentations, specializations (properties for WSs, roles for EUs) of the item referents. For example,
for the phrase high pressure pump, if we fail to find a predicate which relates a pump and a property of
a medium, we next try with a pump and a medium which has that property.

6.4 Model Query Processor

The MQP serves both the NPA and the Discourse Analyzer. We will discuss here the queries used by
the NPA, i.e. requests for the DE for a word, and predicate verification queries; the queries used by the
discourse analyzer are discussed in section 7.5.

6.4.1 Discourse Entity Classes

Noun phrases refer to different types of concepts and so must have different types of internal represen-
tation. We have grouped the NPs of this domain into classes on the basis of the form of the DEs we
create for them. For some classes the DEs are constituents of the model previously described; for others
we dynamically create structures analogous to those in the model. The discourse entity classes are:

1. Equipment Units (EUs). Used as modifiers (e.g. compressor in compressor shaft) or as main
objects (e.g. shaft in compressor shaft sheared). Their DEs are nodes in model-networks. Most
of these nodes exist in the model permanently. Some, however, are created during analysis of the
NP (see discussion below).

2. Media. Used as modifiers (e.g. starting air in starting air compressor) or as main objects (e.g. Jube
oil in lube 0il contaminated). Their DEs are working sxbstances (WSs). All media mentioned in the

15

[Xid

reports, except those used as modifiers of non-permanent EUs, are assumed to have corresponding
WSs in the model.

3. Stuffs. Used as main objects only. Their DEs are created when a NP describing a stuff is
encountered in the text. Their DEs consist of three parts: (A) material, (B) form, (C) quantity.
Examples are: non-metallic particles, chips, metal chunks.

4. Media Properties. They are used as modifiers of media (e.g. high pressure in high pressure
lube oil), or represent concepts on their own (e.g. LO temperature in LO temperature increased
sharply). Their DEs generally consist of three parts: (A) a WS, (B) name of the property, (C)
property value. Not all of these three parts are referred to explicitly in a NP. Possible combinations
are: [A, B, C] (e.g. Jow output air pressure), (A, B] (e.g. LO pressure), (B, C] (e.g. high speed),
[B] (e.g. temperature). A new DE is created each time a property is mentioned in the text.

5. Media Property Values. They are used as parts of 4, above (e.g. normal in normal tempera-
ture), or represent concept on their own (e.g. zero in lo pressure dropped to zero). They may be
numbers (e.g. zero), strings (e.g. nr 1B), or predicates (e.g. above 65 psig). A new DE is created
each time a value is mentioned in the text.

6.4.2 Creating DEs for Words

One issue we have already addresed several times is the mixed static/dynamic characteristic of our
representation. The main equipment structure is recorded statically in model-networks, while DEs for
low-level EUs and words of certain other DE classes are created dynamically. Since the other modules are
designed to be independent of the model representation (in particular, the static/dynamic distinction),
this distinction must be hidden by the MQP.

We use four different approaches to the DE request queries. The first two are exemplified by the
class EU. The third one is illustrated by classes Stuffs and Media Properties and the last one by the
class Media.

For permanently modelled EUs, the dictionary contains a set of pointers to all nodes in model-
networks which are its DEs. Such a set assigned to a word is returned if the DE of the word is requested.
For example, for the word pump the set of pointers to all pumps in the model is returned. The approach
becomes more complicated in case of DE requests for words which correspond to EUs which are not
premodelled. We have two kinds of such EUs:

o EUs as parts of other EUs whose DEs are in the model. As indicated in the preceding section
dealing with the model, it is impractical to represent every tiny element of the modelled equipment.
However, such elements occasionally break and are thus mentioned in the casualty reports. For
any such EU we create a new node. The pointer to this node is returned as a result for the DE
request. In addition, we must establish a connection between this new node and the rest of the
model. This is simple, because the only connection of such a node with the model is through the
part-of relation with some node in model-networks which is mentioned (explicitly or implicitly)
in the text. An example here is: connecting pin in pump drive assembly; the connecting pin is not
statically modelled.

e An EU as a superstructure of some subset of EUs which have been modelied, but not grouped
together in a single network subsumed by some node which could be the DE for the EU. The reason
for not having such EUs modelled ¢ priori goes back to the practicality considerations again: the
number of different ways in which EUs may be grouped together in a single description is simply
too large to be represented explicitly in the model. An example here is: the coupling from diesel
to SAC lube oil pump. All the spin elements which constitute this coupling have been modelled
but are not in a single network subsumed by a node which could have been the DE of this noun
phrase. However, for inference purposes and for reference resolution in later parts of the text, this

16

e —————E S ———

coupling must be identified as a node in the model. A node of this kind has to be created and
returned as a result for the DE request. In contrast to the above case, establishing a connection
between the new node and model-networks is a complex task involving several input and output
links.

Each word of the classes Stuffs and Media Properties has assigned in the dictionary a prototype of a
corresponding DE which is instantiated when the DE for a word is requested. The pointer to this newly
created DE is returned. Words of the class Media could be treated like EUs: some of the WSs exist in the
model permanently while others have to be created when they occur in the text. We decided not to take
this approach here for two reasons: The number of pointers returned would be relatively large (in case
of air, for example, it would be almost equal to the number of air links in model-networks). Secondly, in
most cases, the modifiers are of no great help in reducing this number. More often, the context and the
default values help to disambiguate the reference. Hence, for words of this class we create descriptions
in the same manner as for words of classes Stuffs and Media Properties. However, when such a DE is
about to be interpreted as part of a predicate, we use it and the context information to find the correct
referent in the model. Consider, for example, the sentence Air pressure increased sharply. Analyzing
the NP alone, it is not possible to figure out which particular air WS is meant. However, the information
about the context allows us to make a reasonable assumption that the right referent is the air WS which
is associated with the link entering a pressure measuring instrument.

6.4.3 Predicate verification queries

The predicate verification gueries have the form:

({MQ-Pred-Verif predicate head
arginame arglya)
arg2pame Arg2ya)
)

where predicatae is one of the predicates listed in section 6.3, head must be one of the arginame. and
argiy,1 are DEs returned as result of the DE request queries described above or of predicate verification
queries described below. argiy,y are either sets of DEs or individual DEs. Named rather than positional
arguments are used because the queries may be invoked with only some of the MQ-Pred-Verif arguments.
The MQP provides defaults for all the missing arguments. The head indicates which one of the arguments
should be modified to be later returned as the query result. We call the argy,y of such argument the Aead
argument. Depending on whether the head argument consists of premodelled DEs or of DEs dynamically
created as s result of queries to the MQP, two cases are possible:

e The head argument consists of premodelled DEs. We treat an individual DE as a one-element
set of DEs. The query is then understood as a filter condition. The MQP considers all elements
of the head argument set one by one, checking which ones pass the test described by the query
predicate and collecting them to form the result to be returned. If any of the other arguments
are sets as well, the test eucceeds if any combination of members from these argument sets makes
the predicate true. If none of the members of the head argument set pass the test, the MQP
returns nil, and consequently the NPA must drop this attempted analysis of the NP from further
consideration. For example, for the query

(MQ-Pred-Verif Shape :equip-unit
:shape ring
;equip-unit (gear; geary gear3))
assuming that only gear, and geary are ring gears, the MPQ returns the set (geary gearz). If
none of the three gears were a ring gear, the returned result would be nil, and the NPA would

17

have to try (if possible, e.g. in case the NP were ring gear assembly referring to an assembly of
gears arranged in a snape of a ring) to consider ring as a modifier of some other NP constituent.

o The head argument consists of dynamically created DEs (either just one or a set). In this case the
query is understood as an additional piece of information about the objects described by the head
argument. The MQP updates the DEs of the head argument in such a way that this information
is accounted for in the returned DEs. This may be done either by filling some roles in the head
argument DEs, or by creating modified copies of them. An example of the former is the query

(MQ-Pred-Verif Lubricate :ws
:us wsdescy)

which is posed while processing the NP Jube oil. The returned result is the wsdescy with its
function role filled with (Lubricate *any+). For a slightly different NP compressor Jube oi] the
query would be

(MQ-Pred-Verif Lubricate :ws
:ws wsdescy
:equip-unit {compry compr, comprsz))

Here, the MQP would return the set (vadescyy wsdescy, wadescy3), where wsdescy; would be
modified copies of wsdescy; their function roles would be filled with (Lubricate compressor;).

The evaluation of MQ predicates varies from case to case. It is straightforward for (MQ-Pred-Verit
Hade-0f :object :material), where only :object may be specified as a head (metal particles), and
where it is sufficient to compare the role filler of the tested object with the other argument’s value. It is
more complicated for (MQ~Pred-Verif Operate-On :medium :object). Here, both arguments may be
used as a head (oil pump vs. SAC oil). Furthermore, when the object is a system node, it is necessary
not only to examine its input and output links, but also — if there is no WS associated with any of
these links which has the medium as part of its description — recursively analyse all the nodes beneath
the one corresponding to the object.

The evaluation of the MQ predicates may sometimes involve a quite complex analysis of the model.
An example of this is (RQ-Pred-Verif Drive :driving-object :driven-object). Not only may both
arguments be heads (pump drive gear), but because in most cases only one of them is specified explicitly
(e.g. driving adapter hub, driven gear), the default for the missing argument must be determined. The
evaluation procedure, in contrast to the previous case, is different depending on which argument has
been declared bead. Let’s consider the case when the :driving-object is head. This kind of modifier
is used in our domain for EUs which generate or transmit a rotary movement. These EUs are arranged
in chains of couplings starting at the source of a rotation and ending at places where the rotation is
converted into some other type of WS. In every coupling from this chain we could distinguish between
a driving and driven element. However, in our corpus the only cases where this modifier has been used
are:

1. elements which are on boundaries of higher level system nodes, for example, an adapter hub (lowest
level) connecting a diesel with a transmission system (both higher level system nodes);

2. elements which start chains of couplings in networks subsumed by system nodes, for example a
shaft which starts a transmission system;

3. special arrangements, for example, driving and driven gears in a pump.

Cases from groups (1) and (2) are resolved by analyzing the structure of the model, whereas cases from
group (3) are solved by examining function slot fillers of the argument DEs.

18

6.5 Reference Resolution

If at the end of NP analysis we are left with a set of more than one DE, we have to disambiguate
the reference. The reference resolution procedure has four parts. The first part of reference resolution
is invoked as soon as the NPA finishes and consists of the following steps (we call the DEs to be
disambiguated candidaies; they are of a certain type, such as diesel or shaft):

1. if any of the candidates is on the focus list (this is a list of the DEs corresponding to all the NPs
encountered so far in the analysis of the message) choose this candidate as the intended referent;

2. otherwise, if the candidates’ type is listed on the default table, choose the default DE as the
intended referent;

3. otherwise, mark the ambiguity for later resolution.

This approach follows [16).
The second attempt to resolve disambiguity is made by the clause semantics. The approach here
uses two source of information which can assist disambiguation:

1. the semantic constraints imposed on arguments of clause predicates;

2. specific knowledge about the structure of domain equipment.

Case (2) was illustrated in the preceding section where we have shown how to disambiguate references
to air pressure (air pressure at any point in the equipment is a possible referent here) in the context of
Air pressure increased sharply. If clause semantics fails to resolve the ambiguity, discourse analysis can
be of help as illustrated by the example of starting air regulating valve discussed in section 2, above. As
a last resort PROTEUS engages the user in an interactive session: an explanatory text is shown in the
potification window, the nodes corresponding to the candidate DEs are highlighted on the display one
by one, and the user is expected to select one of them with the mouse. The DE corresponding to the
chosen node becomes the selected referent.

7 Discourse Analysis

7.1 How much understanding do we need?

One basic objective in understanding the messages is determining the cause of the malfunction. In
some cases this information is not explicitly provided. Even reports which have explicit information on
equipment damage or malfunction can pose problems. We give two examples:

1. Several problems might be reported which are causally related to each other, so that fixing the
first problem from such a chain is enough. Consider for example the pair of sentences: Starting
air regulating valve failed. Unable to consistently start or 1B turbine. The malfunction of the 1B
turbine shouldn’t lead to the conclusion that the turbine is broken and therefore needs repair or
replacement. One should recognize that, once the starting air regulating valve has failed. it is not
possible to start the turbine, so probably only the valve has to be fixed.

2. A report may mention a problem which has been fixed by the crew, so no intervention from outside
is necessary, for example, Input drive shaft found to be seized.* S/F [ship’s force] reinstalled old
SAC utilizing new drive shaf. These examples indicate the importance of causal and temporal
relationships in understanding some messages.

¢ This is an inference from a sentence in the CASREP, not an actual sentence.

19

Another basic objective is understanding the effect of the malfunction. This information is crucial
for maintaining an accurate picture of the readiness of the ships from which the CASREPs come. It is
desirable here to recognize the highest level on which the functionality has been affected. For example,
if 8 CASREP mentions both a problem with engaging a compressor as well as a problem with starting
a turbine, it should be possible to recognize that the latter fact gives a more accurate picture of the
readiness of the ship.

This discussion has concerned equipment functionality which has been mentioned erplicitly in the
reports. However, if we broadened the coverage of the model and differentiate among types of damage,
it should be possible to infer the effects of the malfunction even in cases where it is not given explicitly.

The primary data structure for this understanding process is a collection of elementary facts linked
by causal and temporal relations. This representation is discussed in detail in the next subsection. This
structure is built in two phases: the first phase analyzes the information explicitly in the message. The
second phase uses model-based causal reasoning to augment the causal and temporal links. The following
two subsections examine these phases. Appendix B provides a detailed example of the procedures
described in this section.

7.2 The Structure of the Discourse Analysis Results

The structure of the results produced by PROTEUS for 8 CASREP should be flexible enough to capture
all the essential information such as was described in the preceding section. Each CASREP is processed
by various Navy organizations from different perspectives. 1t is therefore natural that the aspects of a
CASREP which each place is primarily interested in, differs from case to case. In order to be able to
tailor the results to these special needs and at the same time to maintain the highest possible uniformity
of the Discourse Analysis Modules across the distributed systems, we decided to produce the resuits in
two stages. We first create a collection of elementary facts onto which a structure of causal and temporal
relationships is imposed. These results are application-independent and contain everything PROTEUS
was able to understand. We then build a summary which meets specific needs. The summary is created
by extracting from the collection only those facts which are relevant for a given application. We will
discuss summaries in more detail below. A user who wants to look beyond the information provided
by the summary may access additional information from the collection. PROTEUS provides for this
purpose a menu-driven interpreter of queries allowing access to more detailed information about the
analyzed report.

Sentences in the reports describe a whole range of different phenomena related to the domain equip-
ment, such as damage, functionality problems, corrective actions, behavior scenarios, etc. From the
viewpoint of an inference system it is desirable to represent these phenomena using s few basic {canon-
ical) elements for which basic inference operations could then be defined. We call these basic elements
Elementary Facts (EF). The main vehicles for making inferences are the simulation in the model and
the general knowledge about the domain equipment. Therefore, only facts about the equipment parts
and the working substances on which they operate are used in the reasoning process. For example. if a
report would indicate operator inebriation as a cause of certain damage to the equipment, we wouldn’t
be able to capture this causal relationship in the model, nor would we find an appropriate rule in the
general knowledge data base. Furthermore, only selected aspecis of the static and dynamic states of
EUs and WSs are of interest to the inference module. For example, information about the sender of a
particular replacement EU has no place in our representation. These decisions about what to include
in the representation were based on our assessment of the needs of discourse analysis for our corpus of
CASREPs.

One important feature of the EFs is their relationship to the simulation in the model. Only certain
facts can be simulated directiy and independently of other parts of the model. Among these are the
control procedures for activating, deactivating, and setting EUs, which are initiated (both in reality and
in the simulation) by manipulating control console buttons and switches. These buttons and switches
are the external system inputs. Facts describing states resulting from damage are also simulated directly.

20

We do not simulate the processes which lead to damage, but rather simulate directly the final damaged
states of EUs by changing their descriptions in the model.

Another category of facts are those which describe states which are dependent on activities elsewhere
in the simulated equipment. For example, low lubricating oil pressure can be the consequence of many
different scenarios, such as damage to the oil pump coupling. Setting this oil to the indicated pressure
in the simulation model and disregarding the rest of the model would produce an inconsistent state of
the model, and 80 is not allowed. Therefore facts of this type can be simulated indirectly only, i.e. by
simulating specific facts from the first (directly simulatable) group.

A third category of facts describe transitions between stable states of the equipment; these transitions
are uot simulated at all. We have here processes leading to damages, like shearing, corroding, etc. and
also those control procedures whose simulation is not split into a sequence of steps, like turning on the
diesel or disengaging the SAC. In all such cases we only simulate the resulting situations. Closely related
to transitions are those actions initiated or performed directly by the operator, such as pushing the
button which starts the turbine. These actions are simulated in the model.

The above considerations lead us to use four canonical forms of elementary facts, each of which has
a set of aspects: '

e Static States. Apply to EUs only. The aspects of static include: operational mode e.g., for
a clutch, engaged or disengaged; physical condition e.g., corroded, sheared; functional
condition — how the EU behaves when operated (the value of this aspect is usually dependent
on the same EU’s physical condition; these relationships are part of the general domain knowledge
about the equipment).

Static state aspects are directly setable in the simulation model.

¢ Dynamic States. Apply both to EUs and to WSs. The aspects of dynamic states depend on the
type of their objects. For system EUs, like turbines or compressors, we use two aspects: operation
which can take values like standstill, routine running, jacking over, coasting down; and cperation
modification which can be used to characterize the operation further by features like normal,
unreliable, erratic, etc. For WSs, we have aspects such as temperature or pressure.

Dynamic states cannot be set directly in the model. They always result from changes initiated
by the operator’s actions or by accidental changes (most notably damages) of the static states of
some EUs. It is however possible to test dynamic states, so we describe these as testable states.

e Transition States. Apply both to EUs and to WSs denoting changes of their static and dynamic
states. It is therefore not surprising that their aspects depend on the type of their objects in the
same way as described above for static and dynamic states. The aspect values are modifications
of the corresponding aspect values of static and dynamic states. For example, we might have
increasing as value of aspect pressure in a transition state of a WS whcee resulting dynamic
state would have low as the value for the aspect pressure.

e Actions. Performed by an abstract operator (whether in reality this is one person or a network
of cooperating technicians is of no interest to us) to achieve specific goals defined by the action’s
aspect. Possible aspects are: routine operation, test, repair and emergency. The objects
of these actions are EUs or WSs.

In establishing causal relationships we are interested only in those links which involve abnormal
situations. Therefore it is necessary to distinguish between normal and abnormal facts. Unfortunately,
some facts can be both, depending on the context in which they occured. In the example of Pump
will not turn when engine jacks over we cannot decide on the basis of the sole fact of the pump not
turning whether the report speaks of a normal or of an abnormal situation. Some facts directly point
to abnormal situations, for example alarms, damages or abnormal parameter readings. Others, like
operator control operations, are always normal. We have therefore three functionality indicators of
facts: normal, abnormal, and unknown.

21

Because of the importance of the time factor in the reports, facts are also characterized by the
intervals during which they are true. In most cases such intervals are not given explicitly in the reports
and have to be inferred. In the taxonomy used for this purpose we followed the approach presented in
(8] and [17).

Taken together, our representation includes the following information on EFs:

e predication: the EF type, its object and aspect as well as other features dependending on the
particular type, such as the category for Actions and Transition States.

e time interval: Interval during which the Predication is true, and its temporal relation to other
intervals.

e functionality: Normal, abnormal, or unknown.

e fact evidence: Default value is the report itself. In some cases, however, the evidence is weakened
by the operator’s qualifications like suspect or believe. Some facts from the Discourse Analysis
Result are hypothesized by the inference module.

e causal links to other facts from the discourse.

7.3 Creating Elementary Facts and Discourse Structures

The input to the Discourse Analysis Module is an ordered set of propositions extracted from the report.
There are two kinds of propositions: events and relations. A sentence can be semantically interpreted
as one or more propositions. Each event consists of a predicate and arguments which are either DEs
determined by the NP Analyzer or other propositions. Furthermore, attached to each event are the
syntactic features of the verb (its tense and aspect) underlying the event proposition. The process
of converting events into EFs is governed by the event proposition’s predicate. We distinguish two
categories of predicates:

1. First Order Predicates. A proposition with such a predicate takes nonpropositional arguments
only. It gets transiated into a temporal structure consisting of one or more EFs, linked by time
arcs which define temporal precedences. The interpretation depends on the proposition’s actual
arguments and on the tense and aspect information of the underlying verb. For examples of these
data structures as well as the interpretation process we refer the reader to appendix A where an
analysis of a report is described in detail.

2. Higher Order Predicates. A proposition with such a predicate takes at least one propositional
argument. The interpretation of these predicates can be one of the following:

(a) Modification of the elementary fact which was created as the interpretation of the proposi-
tional argument. Most often it is the EF Evidence feature which gets modified in this way.
This follows from our design decision not to build any operator’s model. Hence, there is
po need to make the operator’s beliefs into EFs. We treat the belief propositions merely
as modifiers of those EFs (namely their Evidence feature) which are objects of such beliefs.
Consider for example the sentence: Suspect faulty high speed rotating assembly. The suspect
proposition is not recorded as s separate EF {which reflects our belief that the information
about the interval during which the suspicion holds is of no crucial importance to the under-
standing of the report) but rather as the Evidence type (namely Operator’s Suspicion) of the
EF describing the damage of the high speed rotating assembly. Perceptual acts dealing with
what the operator saw, heard, felt, or smelled, inter-personal communications describing what
was reported to the operator by other members of the crew, and monitoring actions reporting
what the operator measured or monitored {all into the same category. However, in these cases
the Evidence feature of the EF is just the report: from the viewpoint of understanding the

22

message there is no difference between stating loud noises coming from diesel and heard loud
noises coming frorm diesel. To report the first, the operator must naturally have heared the
noises in the first place.

(b) Adding new relations between other EFs which were created as the interpretation of the
propositional arguments. Consider the sentence Borescope investigation revealed a broken
tooth on the hub ring gear. Elementary facts are created both for the investigation and for
the break proposition. llowever, the meaning of the reveal proposition can be restricted to
its function as an indicator of how these two elementary facts are related: again, viewed
from the perspective of understanding it seems sufficient to interpret reveal by establishing
an Evidence link between the two facts. Another example, Hub failed, causing spline assy
to fail causing damage to the SAC illustrates a proposition (cause) which conveys explicit
information on the causal relationship between other EFs.

{¢) Changing the structure of a EF group which was created as the interpretation of the propo-
sitional argument. Consider the role of unable in the senience Unable to start the nr 1B
turbine. The EF group created for the start proposition contains a Transition State EF for
the turbine whose result is completed and functionality: normal. However, unable
changes this interpretation into one where the Transition State of the turbine must have
result: arrested before completion and functionality: abnormal.

Discussing the translation of propositions into EF groups we tacitly assumed that the events described
by them were singular, i.e. they occur only once. This is not always so. Sometimes it is important to
convey the repetitive character of the events. Consider a slight modification of the sentence discussed
above: Was unable to CONSISTENTLY start the or 1B turbine. The adverb indicates that there were
several attempts at starting the turbine and some of them were successful whereas other failed. Because
time is an important factor in representing EFs we have a problem: should we include into the discourse
representation several instances of the EF group corresponding to the start event”? It would be difficult
to make inferences with such sets. Furthermore, we don’t know how many times the event was repeated.
The solution we came up with for this problem is a special structure which we call Habstual. A habitual
consists of one situational EF, a group of bshavioral EFs, a time interval called the time basis, and
a repetition character whose values are keywords like exratic or always same. The semantics of
the habitual is as follows: whenever the time interval of the situational EF falls within the confines of the
time basis, the EFs from the behavioral group follow according to the repetition character. Habituals are
indicated either directly by words like consistently, repeatedly, whenever or by a combination of words
and tenses, e.g. when coupled with future or present tenses is equivalent to whenever.

After all the input events have been processed, the relations between the EFs are analysed. They have
the form (Temporal-Conjunciivu eventy eventy), where Temporal-Conjunction may be before,
during, swhile, etc. As a result of their interpretation, sore time arcs relating endpoints of the intervals
associated with eventy and eventy are added to the TIME GRAPH. We defined several relationships
between intervals, e.g. (starts-during int; inty), (intersectiom inty imty) in terms of how
their endpoints are related. Doing this we followed the taxonomy given by [1]. The first step in the
interpretation is to decide which EFs are representative for the temporarily conjoined events. Next, a
relationship is chosen from a table mapping the products of temporal conjunctions and EF types into
interval relationships. Finally, according to the chosen relationship, new time arcs are added.

7.4 Causal Relationships

We have noted above the importance of linking events into causal chains. For some reports it is necessary
to build more than just one such chain. Usually they overlap partially. For example, the following
CASREP

While diese] was operating with SAC disengaged, the SAC LO alarm sounded. Believe the
coupling from diesel to SAC lube oil pump to be sheared. Pump will not turn when engine

23

Jacks over.

bas two causal chains: one involving the alarm, the other containing the engine jacking over. The
shearing of the coupling is a common starting point for both these chains.

The most important reason for making causal and temporal relationships explicit during under-
standing is the observation that some of the information we considered important for understanding of
CASREPs in section 7.1 can be extracted from causal chains. For example, they help to distinguish
between primary and derivative problems as well as between intermediate and ultimate consequences
of damages. Sometimes, especially in analyzing failure trends to discover possible design flaws, it may
be very important—in cases when two or more damages were reported—to know whether one of them
could have caused the other ones.

Building causal and temporal dependencies between reported facts reflects a significant aspect of
understanding. We can view a CASREP as a story and following [21] claim that an event in a CASREP
is understood only when a plausible explanation for that event with respect to other events in the
CASREP is found. The approach of causal and temporal chain building to understand:ug has been
mainly applied to stories about personal encounters, for example [22). The understanding process was
based on a collection of rules capturing knowledge about beliefs and actions of people. For two given
facts from a story, a causal link between them was established, if it was possible to construct a path
which had the two facts as endpoints and possibly some bypothesized facts as intermediaries. The crucial
feature of this path was that any two adjacent facts from it were related by causality expressed by some
rule from the knowledge base. The solution we chose for analyzing CASREPs is an extension of this
approach. In contrast to the knowledge about people’s behavior which is characterized by a relatively
large margin of uncertainty, the knowledge on which we base our understanding is in substantial part
very precise: many of the events encountered in CASREPs can be simulated in a deterministic way
using the PROTEUS equipment model. In the section describing the model we demonstrated that it is
possible to propagate consequences of an event throughout the model until a stable state is reached. It
means that given two facts as candidates to be causally linked, we can simulate one of them and check
whether the other can be confirmed in the resulting stable state of the model. One of the problems with
finding causal links is to guess which pairs of EFs should be tried. Considering all pairs would lead to a
large number of queries. As observed in section 7.2 we are interested in causal links between abnormal
facts only. Furthermore, in presenting the taxonomy of EFs we discussed their settability and testability.
Both these features of EFs become useful now.

At the end of the stage during which EFs are created, habituals recognized, and explicit temporal
relations processed (as described in section 7.2), the Discourse Analysis Result has the form of a directed
acyclic graph, usually unconnected, consisting of several connected subgraphs. We say that the EFs
which are part of such subgraphs describe situations. The next step in the analysis is to decide which
situations are abnormal. When at least one of the constituent EFs is abnormal, we classify the situation
as abnormal. A situation is considered normal when all its constituent EFs are normal. Other cases are
those when there are no abnormal EFs and at least one has the functionality: wunknown. In such
cases we resort to simulation. Consider again the example introduced in section 7.2, Pump will not
turn when engine jacks over. To classify this situation we first create normal operational conditions for
the SAC and then run a simulation test which consists of jacking over the engine and checking whether
the pump is turning. If we find the pump turning, we can conclude that the situation described in the
sentence is abnormal.

Once the abnormal situations have been found, we take all possible ordered pairs from among them
and for each one try to determine (using simulation) whether its elements can be csusally related. Let's
call a pair’s first element an antecedent and the second one a consequent. If any of the antecedent EFs
is a testable fact or if there is no testable fact among the consequent EFs, we discard such a pair from
further considerations. Otherwise we run two simulation tests. The first one consists of the following
steps.

24

1. all the settable EFs from the aniecedent as well as the settable EFs preceding the testable one
from the consequent are set in the model,

2. if there are some remaining parameters whose setting is necessary for the SAC to operate in the
mode indicated by the antecedent or consequent situation, they are set to default values,

3. the scenario resulting from the above steps is simulated,

4. the condition described by the abnormal testable EF (there may be more than one abnormal EF
in the consequent, but only one among them should be testable) is checked.

The second test is similar, the only difference being that instead of setting the abnormal EF from
the antecedent (again, there may be more than one abnormal EF in the antecedent, but only one among
them should be settable), we set its normal cou.. rt. Now, if we get true as a result in the fourth
step in the first test and false in the same step in the second test, we conclude that there is a causal
link between the abnormal EF from the antecedent and the abnormal fact from the consequent. Any
other pair of results doesn’t justify such a conclusion.

A possible heuristic for constructing useful simulation queries (not implemented yet) consists of
grouping abnormal facts from class Dynamic State into sets corresponding to the WS media on which
the damaged or malfunctioning EUs operate. Each such set contains facts which are good first candidates
for arguments of causal relationships.

The uitimate goal of this part of the understanding procedure is to include all abnormal EFs into
some causal chain. When it is not possible to achieve this, attempts are made to hypothesize facts and
treat the: as additional elementary facts for the purpose of building more elaborate causal chains which
would possibly include the "loose” facts. The hypotheses are based on general domain knowledge about
equipment, and especially its failures. This knowledge is organized as a set of IF—THEN rules. It is
important to notice here that the inferred fact is only possibly true. A hypothesis is supported if it can
be successfully used to link two original facts into a causal chain.

Once the causal links have been identified, new time arcs can be added to the TIME GRAPH. They
follow from a straightforward observation about causal links: if a fact EF1 has been discovered to be a
cause for another fact EF2, then the starting point of the time interval during which EF1 is true must
precede the starting point of a similar interval for EF2.

7.5 Model Query Processor

In section 6.4 we showed how queries to the model were helpful for noun phrase analysis. Here we con-
centrate on model queries related to the discourse analysis. We differentiate between dynamic simulafion
gueries and static struciural quertes.

The simulation queries have one of the three forms:

¢ NQ-Simulation-Set (ef-proposition)
¢ MQ-Simulation-Test (ef-proposition)
e NQ-Simulation-Defaults (eu, mode)

where ef-proposition is an EF proposition, eu is an EU and mode is one of its possible opcrational
modes. The first two queries are self-explanatory, the third is the one used in the third step of a causal
link simulation test described above. MQ-Simulation-Test is a predicate.

Structural queries are used in IF—THEN rules for checking the context in which they may be applied.
Most of the context constraints can be expressed by the predicate verification queries which are used
for the noun phrase analysis (cf. section 6.4.3) but some additional query forms were required. One
structural query which was introduced primarily for discourse analysis examines paths bet ween model
nodes. It has the form:

25

(MQ-Path from-eu to-eu
&opt :from-medium :to-medium :always-medium)

from-eu and to-eu are two different EUs in the model. from-medium, to-medium and alwvays-medium
are optional arguments which in our domain take one of the values: 0il, air, or rotation. MQ-Path
returns false if there is no path in the model network between the nodes at which from-eu and to-eu
reside. Otherwise, it returns the first path found (there may be more!). The optional arguments put
constraints on the links. If from-medium is specified, the WS associated with the first link in the path
must have the given medium as part of its description. If to-medium is specified, the WS associated
with the Jast link in the path must have the given medium as part of its description. If always-medium
is specified, the WSs associated with all the links in the path must have the given medium as part of
their descriptions. An example of an IF—THEN rule which uses MQ-Path queries in its context part is:

if (Static-State :equip-unit *1 :aspect phys-cond :valus seized)
in context of
((MQ-Feature :equip-unit :equip-unit 2
:function generate :medium rotation)
(MQ-Path *2 ¢3 :alvays-medium rotation)
(MQ-Path *3 ¢1 :always-medium rotation))
then (Static-State :equip-unit #3 :aspect phye-cond :value sheared)

The interpretation of this rule is: If an element is seized, then it is possible that an element lying on
the path of rotary elements between a generator of the rotation and the seized element shears.

7.6 Report Summary

The last stage of the discourse analysis creates a report summary which reflects the purposes of analyzing
CASREPs - they can be different depending on where and to whom the reports are dispatched (cf.
section 7.2). The information which gets into the summary is extracted from the structure containing
everything which PROTEUS was able to understand (the collection of EFs and their relationships). For
each specific application there exists a different summary prototype designed in such a way that the
most crucial information (from the perspective of a given application) will be extracted. For example,
a summary might contain tables of damage, functionally impaired equipment, and corrective actions.
Each damage entry would include the industrial name of the damaged element, the place of the element
in the modeled equipment, the nature of the damage, the degree of certainty that the damage occurred,
and the information on whether the damaged element had been fixed, replaced or left in place. The
impaired equipment and corrective action entries would include similar details. This part of the system
hasn’t been implemented yet.

8 Equipment Model Editor

The PROTEUS system presented above, at its present stage of development, can only process reports
about malfunctions of the starting air system. Considering that this system constitutes only a tiny
portion of the entire range of shipboard equipment covered by CASREPs, we cannot claim at prescnt
to have s very practical text processing system.

If technical text understanding systems like PROTEUS, based on equipment simulation, are to be of
any practical value, techniques must be provided to enable users other than the designers of such systems
to tailor or expand them to new domains. The most difficult part of this task is building simulation
models for the equipment in the new domains. Being aware of all this from the very beginning of our
research, we have made many design decisions to facilitate the future development of 8 module for the
computer-assisted design of new equipment models.

26

Even now creation of a model doesn’t require specification of every slot in every single instance
in the model. In the first place, many of the instance slot fillers are derived from information in the
prototypes. In addition, we have developed a quite elaborate initialization procedure whose task it is
to build a fully-fledged model from specifications expressed in a more concise and natural way than
meticulous instance definitions. In particular, we require at present that only instances describing EUs
be given explicitly. Some slots of these instances contain information for the initialization procedure. The
most notable examples here are slots describing how the EU modeled by an instance is linked to other
EUs on the same and on the immediately higher levels. This information is used by the initialization
procedure to create instances of appropriate links. The information about links to be found in these
slots is accompanied by information specifying the constant features of the WSs which are supposed to
be associated with the links. The instances of these WSs are built automatically by the initialization
procedure as well.

A very important resource at our disposal which can dramatically improve the model building process
is our graphical display. The initialization procedure we have developed so far can provide the basis
for a powerful equipment model graphic editor. We have been aware of this possibility from the very
beginning and have fashioned the graphical display with this potential application in mind. For example,
all of the model network icons for nodes and links have been written into a regular grid which can be
made visible on demand.

A graphical editor would allow us to replace the current approach of coding the individual EU
instance specifications with an interactive session. At the beginning of the editor session an empty grid
would be displayed along with a menu of icons for the prototype equipment like valves, pumps, filters,
gears, etc. The user could then drag any of these icons into a chosen place on the grid. This done, the
editor would involve the user in a menu-driven dialogue to capture the specific information needed to
create an instance of the prototype corresponding to the chosen icon. In a similar fashion the user could
specify all the links (i.e. dragging their icons into appropriate places and providing specific information
by means of a dialog). The information necessary to complete the descriptions of the WS associated
with links need be given only at the nodes which are sources of this kind of WS. The setting of nodes
and links would be repeated until the user had completed an entire network. The user would then chose
one of the displayed nodes for recursive refinement. This stepwise top-down process could continue until
the entire model had been specified.

This scenario assumes that the whole model is built from instances of predefined prototypes. It is
more realistic to assume that it will be possible to piece together only a portion (although probably quite
substantial) of a new equipment from predefined prototypes. Therefore, it will be necessary to facilitate
defining new prototypes as well. This will probably require a more thorough knowledge of the system
on the part of the user.

9 Implementation

The PROTEUS system has been substantially implemented and debugged and has been publically
demonstrated operating on a small set of actua]l CASREPs. Of the components described in detail
above: the equipment model has been fully implemented as described. The noun phrase analyzer has
been fully implemented except for the mechanism which would handle superstructures (cf. section 6.4.2)
and the contributions of clause semantics and discourse analysis to reference resolution. For discourse
analysis we have implemented everything except the generation of report summaries (cf. section 7.6).

10 Conclusion
CASREPs are written on board Navy ships and sent to various Navy commands for collection and

analysis. PROTEUS has been designed for use by the recipients of these messages, in order to automate
message processing. In these concluding remarks we want to investigate an attractive extension to this

27

application. As we have seen in this paper, the approach we have taken is based on a rather detailed
simulation of the equipment which is the subject of the CASREPs to be analyzed. The simulation
model is the world in which we interpreted CASREP texts. Looking at reported facts in the context of
this world allowed us to solve some difficult understanding problems, most notably identifying concepts
referred to in the reports and finding coherence relationships between their individual sentences. This
was possible because the simulation model proved to be a rich source of information about the domain
as well as a good inference mechanism. It was also a useful tool for checking hypotheses. In effect, the
model together with the query processor operating on it could be justifiably referred to as a small expert
system.

We believe that expanding PROTEUS to a powerful interactive diagnostic assistant would be a logical
consequence of the approach we took to language understanding. Then it would be possible to deploy
PROTEUS systems not only where the CASREPs are collected but directly on Navy ships. To see why
this should be desirable let us make some general comments on CASREPs. Reading them we got the
feeling that the degree of effort (later reported) and expertise involved in attempts to locate reasons for
problems diflered greatly from case to case. At one extreme there are cases when nothing was done to
even identify the nature of the problem. On the other hand there are quite long reports (too long to be
quoted here) which describe successful diagnostic sessions leading to the full identification of the causes
of failure. In between are CASREPs which describe symptoms of problems and then:

o only speculate on the possible damage which could explain these symptoms (It is likely the LO
pump has sheared.), or

e give indirect evidence without indicating any damage (Start air pressure dropped below 30 psig
during monitoring of 1A turbine. Oil is discolored and contaminated with metal), or

e postpone the diagnosis until more tests have been conducted (Retained oil sample and filter element
for future analysis.), or

e give no reasons for the occurrence of the symptoms at all (During routine start of main propulsion
gas turbine, SAC air pressure decreased rapidly to 5.74 psi resulting in an aborted engine start.
Exact cause of failure unknown.).

These wide variations suggest that, if only the ship technicians were better experts, the level of
diagnosis would have been deeper and the CASREPs correspondingly more informative.

Because it is unrealistic to expect that all technicians posess the same high level of expertise, it
could be heipful to have an interactive diagnostic assistant on the ship which could lead a relatively
inexperienced technician through a diagnostic session. This guidance would take the form of suggestions
for tests to be performed and requests to the technician for more diagnostic information. The success of
such a system would depend greatly on the ease with which the initial symptoms could be described and
the quality of the subsequent interactions. Because of the wide variety of poesible symptoms (as evidenced
by the CASREPs), a combination of a rich natural language capability and a graphic interface seems
called for. We believe therefore that PROTEUS, with its integrated language understanding, graphic
interface, and detailed equipment model, is particularly well suited to be the base for such a system.

11 Acknowledgments

This paper is based upon work supported by the Defense Advanced Research Projects Agency under
Contract N00014-85-K-0163 from the Office of Naval Research, and by the National Science Foundation
under grant DCR-85-01843. We wish to acknowledge the contributions of: Leo Joskowicz, who developed
some of the causal analysis procedures and assisted in the final preparation of this manuscript; John
Steriing, who developed the current implementation of the noun phrase analyzer and wrote parts of
appendix A; Ngo Thanh Nhan, who developed the grammar and implemented the clause analyzer; and
Michael Moore, who integrated the components on the Symbolics.

28

References

[1] J. Allen. Maintaining kncwledge about temporal intervals. Communications of the ACM, 832-843,
1983.

(2] D. Bobrow, R.M. Kaplan, M. Kay, D.A. Norman, H. Thompson, and T. Winograd. Gus, a frame-
driven dialog system. Artificial Intelligence, 155-173, 1977.

[3) D. Bobrow and T. Winograd. An overview of krl, a knowlwdge representation language. Cognitive
Science, 1-46, 1977.

(4] D.G. Bobrow, editor. Qualitative Reasoning about Physical Systems. The MIT Press, 1985.

{5] T. Bylander and B. Chandrasekaran. Understanding behavior using consolidation. In Ninth Int.
Joint Conf. on Artificial Intelligence, pages 450-454, 1985.

[6] E. Charniak. On the use of framed knowledge in language comprehension. Artificial Intelligence,
225-265, 1978.

{7} J. de Kieer and 1.S. Brown. A qualitative physics based on confluences. Artificial Intelligence,
7-83, 1984,

[8] D.R. Dowty. The effects of aspectual ciass on the temporal structure of discourse: semantics or
pragmatics? Linguistics and Philosophy, 37-61, 1986.

(8] T. Finin. Nominal compounds in a limited context. In R. Grishman and R. Kittredge, editors,
Analyzing Language in Restricted Domains, pages 163-173, Lawrence Erlbaum, 1986.

{10] K.D. Forbus. Qualitative process theory. Artificial Intelligence, 85-168, 1984.

[11] R. Grishman, T. Ksiezyk, and N.T. Nhan. Model-dased analysis of messages about equipment.
Technical Report 236, Computer Science Department, New York University, 1986.

[12] T. Ksiezyk, R. Grishman, and J. Sterling. An equipment model and its role in the interpretation
of noun phrases. In Tenth Int. Joint Conf. on Artificial Intelligence, pages 692-695, 1987,

(13] B. Kuipers. Commonsense reasoning about causality: deriving behavior from structure. Artificial
Intelligence, 169203, 1984.

[14]) W. Lehnert. Plot units: a narrative summarization strategy. In W.G. Lehnert and M. Ringle,
editors, Strategies for Natural Language Processing, pages 375-412, Lawrence Erlbaum, 1982,

(15) E. Marsh, H. Hamburger. and R. Grishman. A production rule system for message summarization.
In Proc. of the Nat. Conf on Artificral Intelligence, pages 243-246, 1984.

[16) M. Palmer, D. Dahl, R. Schiffman. L. Hirschman, M. Linebarger, and J. Dowding. Recovering
implicit information. In 24th Annual Meeting of the ACL, pages 10-19, 1986.

(17] R. Passonneau. A computational model of the semantics of tense and aspect, forthcoming. Com-
putationsl Linguistics, 1988.

{18] C. Rieger. An organization of knowledge for problem solving and language comprehension. Artificial
Intellhigence, 89-127, 1976.

(19] D.E. Rumelhart. Understanding and summarizing brief stories. In Basic processing in Reading.
Perception, eand Comprehension. Hillsdale, 1977,

{20] N. Sager. Natural language information formatting: the automatic conversion of texts to a struc-
tured data base. In M.C. Yovits, editor, Advances in Computers, Academic Press, 1978.

[21] R. Schank and R. Abelson. Scripts, Plans, Goals, and Understanding. Lawrence Erlbaum, 1977.

[22] R. Wilensky. Planning and Undersianding. A Computational Approach to Human Reasoning.
Addison-Wesley, 1983.

A Noun Phrase Analysis Example

As an illustration of some considerations presented in section 6 we present the analysis of a particular
noun phrase (NP):

starting air temperature regulating valve
The Syntactic Analyzer produces the following structure

(EP valve
(AN-STG ((progressive start)
(air singular)
(temperature singular)
(progressive regulate))))

Note that the parser has grouped the pre-nominal adjectives and nouns (AN-STG) into a list but not
assigned any further structure. This structure is passed through Clause Semantics and becomes input to
the NP Analyzer. The verbs start and regulate map into the predicates Start and Regulate respectively.
The semantic classes of the non-predicate items are: air — substance, temperature — feature, valve
— squipment. Using the predicates and the semantic classes the NP Analyzer tries to map the words
into a nested structure of patterns as discussed in section 6.3. Each such pattern is assigned a semantic
class so that it may become a member of a higher-level pattern. Thus, starting air is mapped into a
pattern whose class is substance. All possible analyses are constructed bottom-up using these patterns.
One possible interpretation for our NP is:

(Regulate :head :instrument
:instrument valve
tobject (Measure :head :feature
:feature temperature
:object (Start :head :instrument
:instrument air)))

This interpretation corresponds to the parse:
(((starting air) temperature) regulating valve)

Along the way, a pattern corresponding to another parse
((air temperature) regulating valve)

will also be formed. However, it will not play a part in the final analysis, because the class of this
phrase, eaquipment, does not appear at the :instrument position in any pattern headed by start.
The analysis is not unique. The one corresponding to:

((starting air) (temperature regulating valve))

30

will also be formed. The interpretation here is:

A valve, which regulates temperature (of something wnspecified) and also operates (in an
unspecified manner) on air used for starting.

There is no mechanism provided at present for preferred readings. Hence, no preference is given
between these two interpretations. Both will be used to construct queries to the domain model. And
both will, in this case, result in the same valves being identified. However, in other examples, an analysis
generated by the NP Analyzer can be disallowed by the pragmatics of the domain model.

Once all the interpretations are formed, the NP Analyzer recursively invokes the Model Query Pro-
cessor in order to determine the DE(s) which can be the referent of the NP. Space considerations allow
us to present here only the queries used for the first interpretation:

o for valve, (MQ-DE-Request valve) returns the set of all the valves in the model:
(valvey,valve,,...,valvey),;

e for temperature, (MQ-DE-Request temperature) returns a newly created DE (let its generated
name be wspropag), of class medium property (cf. section 6.4.1);

o for air, (MQ-DE-Request air) returns a newly created DE, (let its generated name be wsdescyy),
of class medium with medium part set to air (cf. section 6.4.1);

e for the phrase starting air,
(MQ-Pred-Verif Start :head :instrument :instrument wsdescay),
returns wsdescog which is a modified version of wsdescoy (the function part of wsdescag is filled
with Start);

e for the phrase starting air temperature,
(MQ-Pred-Verif Neasure :head feature :feature wspropzp :object wsdescyg),
returns wspropgo which is a modified version of wspropzg (the property name part of wspropgg
is filled with temperature);

e finally, for the entire NP, the query

(XQ-Pred-Verif Regulate :head instrument
:instrument (valvey,valves,...,valvey)
:object wspropyp)

is generated. For each of the valve; the Model Query Processor tests in the model whether one
of the valve’s functions is to regulate 8 WS whose description is given in wapropgg. i.e. whether
1. its medium is air and
2. there is any EU (euy) in the model such that there exists a path from valve; to euy with

:always-medium = air (cf. MQ-Path, section 7.5) and euy, is started by the medium associated
with the last link of the found path and

3. the regulated parameter is temperature.

In the model only one of the valves, namely valvey, survives this test. Hence, valvey is returned
as the only DE for the NP.

31

B Discourse Analysis Example

We show the analysis of the following message:

While diesel was operating with SAC (Starting Air Compressor) disengaged, the SAC
LO (Lubricating Oil) alarm sounded. Believe the coupling from diesel to SAC lube oil
pump to be sheared. Pump will not turn when engine jacks over.

The Clause Semantics Module (¢f. Fig. 1) produces the following representation for the message
which is kept in a global variable #contexte: -

((EVENT -3 (Is-Disengaged sacy))
(EVEST -4 (Operate diesely))
(THS-ASP e-4 (PAST PROGRESSIVE))
(EVENT e-6 (Sound alarmg))
(TNS-ASP -5 (PAST))

(EVEST o-6 (Is-Sheared couplingy))
(EVEET ¢-7 (Believe ANYONE e-8))
(TES-ASP e-7 (PRESENT))

(EVENT ¢-8 (Jack-Over diesely))
(TES-ASP e-8 (PRESENT))

(EVENT ¢-9 (Not (Turn pumpy)))
(THS-ASP e-9 (FUTURE))

(RELATION r-4 (VITHE e-4 ¢-3))
(RELATION r-5 (WEILE e-4 ¢-5))
(RELATION r-6 (WHEN ¢-9 ¢-8)))

where sacy, diesely, alarmy, couplingy and pump; are names of DEs determined by the NP
Analyzer in a similar way as described in appendix A.

The analysis of this input can be split into stages:

(1) For each event from scontexte with a first-order predicate (cf. section 7.3) its translation into
EFs (see also Fig. 4) is created:

For e-3: EF1
For e-4: EF2
For e-6: EF3, EF4, EFS
For e-6: EF6
For ¢-8: EF7
For ¢-8: EF8

Note that alarm sounded is treated as a change of state, from alarm guiet (EF3), through a transition
(EF4), to alarm sownding (EFB). The description of an EF consists of the parts shown in section 7.2.
Below we show the EF predications (in a slightly simplified form, omitting some of the arguments
irrelevant for this presentation):

EF1: (Static~State :equip~unit sacy
:aspect OPERATIONAL MODE
:value DISENGAGED)

EF2: (Dynamic-State :equip~unit dieselg
:aspect OPERATION
:value NORMAL)

32

M

EF3: (Dynamic-State :equip-unit alarmy
:aspect OPERATION
:value NORMAL)

EF4: (Transition-State :equip-unit alarmy
:aspect OPERATION
:value ACTIVATING)

EF5: (Dynamic-State ‘equip-unit alarmy
:aspect OPERATION
:value SIGEALING)

EF6: (Static-State requip~unit couplingy
:aspect PHYSICAL COND
:value SHEARED)

EF7: (Dynamic-State :equip-unit pump;
:aspect OPERATION
:value STANDSTILL)

EFS8: (Dynamic-State tequip-unit diesely
:aspect OPERATION
:value JACKING OVER)

The only case deserving a comment is EF7: when the predicate Turm is applied to simple node
EU (such as a shaft), it is translated into a dynamic state involving the SPEED of a WS. When
it is applied to a system node EU (such as a pump), only a portion of which actually turns, it is
translated into a state involving the OPERATION of the EU.

(2) Higher-order predicates from #contexte are processed. Only e~7 qualifies as such. No new
EF is created; rather, the evidence part of EFS is set to OPERATOR’S BELIEF.

(3) The RELATION entries from scontext+ add new elements to the DA Result:

o Interpretation of r-4 introduces a new EF, EF9. Its predication is:

EF9: (And :argl EF1 :arg2 EF2).
1t is related to EF1 and EF2 by the time arcs 1— 15, 3— 15, 16—4 and 16—2; i.e., its time
interval is within those for EF1 and EF2.

o Interpretation of r-6 results in adding the time arcs 15—8 and 7—18,; i.e., the transi-
tion occurs within the interval of EF9.

o The case of r-6 is the most interesting. First, arcs 11— 13 and 14——12 are created.
Then, on the basis of the tenses associated with ¢-8 and ¢-9, and the temporal conjunction of
-6 (when), the situation described by r-6 is recognized as a repetitive one. Hence a habitual (cf.
section 7.3), HB1 is created. Its features are:

situ-ef: EF7; behav-efs: (EF8); repet-char: ALVAYS SANE

(4) At this point the TIME GRAPH consists of 3 connected subgraphs which constitute the situ-
ations (cf. section 7.4):

SITUL — nodes: 8§, 2, 3, 4, 15, 16, 5, 6, 7, B

SITU2 — nodes: 9, 10

SITU3 — BB1
SITU1 is easily recognised as abnormal because of the explicit abnormality of EF4 and EF5. Simi-
larly, because of EF6, SITU2 is abnormal. The case of BB had been discussed in section 7.4. The
following queries are used here:

(BQ~Simulation-Set <« proposition of EF8)

(RQ-Sisulation-Defaults sacy NORMAL)

33

(MQ-Simulation-Test < proposition of EF7)
The result false leads to the conclusion that HB1 is abnormal.

(5) Now PROTEUS is ready to look for causal links using the simulation mechanism. Applying
the procedure delineated in section 7.4 two pairs of tests are run:

(1a):

(Mg-Simulation-Set < proposition of EF6 %)

(MQ-Simulation-Defaults sacy NORMAL)

(MQ-Simulation-Test < proposition of EF6 >)

(1b):

(MQ-Simulation-Defaults sacy NORMAL)

(MQ-Sizulation-Test < proposition of EF5 >)

(2a): :

(MQ-Simulation-Set <« proposition of EF6:»)

(MQ-Simulation-Set <« proposition of EF7»)

(MQ-Simulation-Defaults sac; BORMAL)

(MQ-Simulation-Test < proposition of EF8»)

(2b):

(MQ-Simulation-Defaults sacy NORMAL)

(MQ-Simulation-Test < proposition of EF8 >)
The results: (true, false) for (1) and (true, false) for (2) justify the inclusion in the DA
Results of two causal links: EF6 —> EF4 and EF6 —> HB1.

(6) Using the depenaency between causal and temporal relationships, two more time arcs are added
to the TIME GRAPH: 9—6 and 8—17. The final version of the DA Result’'s TIME GRAPH is
shown in Fig. 4.

[23:54.47 |

Simvlation Clock

o B
O—EFQ O@

T tetpruat =3 Gur s WhIEh
Sranmtary Poct TFn Moles (100~
13 WSte Tact’s el 1Y)

r~—W--q
t |

Q— EFk ;_@

—.e

MBS UTH T Ssts -1 o
Syemiteonet Pact Bk Cttaties

Figure 4: Final Version of the DA Result’s TIME GRAPH.

34

